Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 133: 112102, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652971

RESUMO

Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.

2.
J Control Release ; 369: 517-530, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38569942

RESUMO

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.

3.
Diabetes Metab Syndr Obes ; 17: 1383-1389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529167

RESUMO

Coronavirus disease 2019 (COVID-19)-induced new-onset diabetes has raised widespread concerns. Increased glucose concentration and insulin resistance levels were observed in the COVID-19 patients. COVID-19 patients with newly diagnosed diabetes may have worse clinical outcomes and can have serious consequences. The types and exact mechanisms of COVID-19-caused diabetes are not well understood. Understanding the direct effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic beta cells and insulin target metabolism organs, such as the liver, muscle, and adipose tissues, will provide new ideas for preventing and treating the new-onset diabetes induced by COVID-19.

4.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
5.
Cancer Lett ; 580: 216496, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993084

RESUMO

Anaplastic thyroid cancer (ATC) is one of the deadliest cancers, whose important malignant feature is dedifferentiation. Chromatin remodeling is critical for tumorigenesis and progression, while its roles and regulator in facilitating dedifferentiation of ATC had been poorly understood. In our study, an emerging function of hematological and neurological expressed 1 (HN1) in promoting dedifferentiation of ATC cells was uncovered. HN1 expression was negatively correlated with the thyroid differentiation markers both at mRNA and protein level. Knockdown of HN1 in ATC cells effectively upregulated the thyroid differentiation markers and impeded the sphere formation capacity, accompanying with the loss of cancer stemness. In contrast, overexpression of HN1 drove the gain of stemness and the loss of thyroid differentiation markers. Nude mouse and zebrafish xenograft models showed that inhibition of HN1 in ATC cells effectively hindered tumor growth due to the loss of cancer stemness. Further study showed that HN1 was negatively correlated with CTCF in an independent thyroid-cancer cohort, and inhibition of HN1 enhanced the expression of CTCF in ATC cells. Overexpression of CTCF significantly reversed the dedifferentiation phenotypes of ATC cells, whereas simultaneously inhibiting HN1 and CTCF was unable to recover the level of thyroid differentiation markers. The combination of ATAC-seq and ChIP-seq analysis confirmed that CTCF regulated genes relating with thyroid gland development through influencing their chromatin accessibility. HN1 inhibited the acetylation of H3K27 at the promoter of CTCF by recruiting HDAC2, thereby inhibiting the transcriptional activation of CTCF. These findings demonstrated an essential role of HN1 in regulating the chromatin accessibility of thyroid differentiation genes during ATC dedifferentiation.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Antígenos de Diferenciação , Linhagem Celular Tumoral , Cromatina , Epigênese Genética , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Peixe-Zebra/genética
6.
BMC Cancer ; 23(1): 1131, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990304

RESUMO

Anaplastic thyroid carcinoma (ATC) was a rare malignancy featured with the weak immunotherapeutic response. So far, disorders of immunogenic cell death genes (ICDGs) were identified as the driving factors in cancer progression, while their roles in ATC remained poorly clear. Datasets analysis identified that most ICDGs were high expressed in ATC, while DE-ICDGs were located in module c1_112, which was mainly enriched in Toll-like receptor signalings. Subsequently, the ICD score was established to classify ATC samples into the high and low ICD score groups, and function analysis indicated that high ICD score was associated with the immune characteristics. The high ICD score group had higher proportions of specific immune and stromal cells, as well as increased expression of immune checkpoints. Additionally, TLR4, ENTPD1, LY96, CASP1 and PDIA3 were identified as the dynamic signature in the malignant progression of ATC. Notably, TLR4 was significantly upregulated in ATC tissues, associated with poor prognosis. Silence of TLR4 inhibited the proliferation, metastasis and clone formation of ATC cells. Eventually, silence of TLR4 synergistically enhanced paclitaxel-induced proliferation inhibition, apoptosis, CALR exposure and release of ATP. Our findings highlighted that the aberrant expression of TLR4 drove the malignant progression of ATC, which contributed to our understanding of the roles of ICDGs in ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Receptor 4 Toll-Like/genética , Morte Celular Imunogênica , Paclitaxel/uso terapêutico , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral
7.
J Exp Clin Cancer Res ; 42(1): 182, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501099

RESUMO

BACKGROUND: Anaplastic thyroid carcinoma (ATC) was a rare and extremely malignant endocrine cancer with the distinct hallmark of high proportion of cancer stem cell-like characteristics. Therapies aiming to cancer stem-like cells (CSCs) were emerging as a new direction in cancer treatment, but targeting ATC CSCs remained challenging, mainly due to incomplete insights of the regulatory mechanism of CSCs. Here, we unveiled a novel role of ISG15 in the modulation of ATC CSCs. METHODS: The expression of ubiquitin-like proteins were detected by bioinformatics and immunohistochemistry. The correlation between ISG15 expression and tumor stem cells and malignant progression of ATC was analyzed by single-cell RNA sequence from the Gene Expression Omnibus. Flow cytometry combined with immunofluorescence were used to verify the enrichment of ISG15 and ISGyaltion in cancer stem cells. The effect and mechanism of ISG15 and KPNA2 on cancer stem cell-like characteristics of ATC cells were determined by molecular biology experiments. Mass spectrometry combined with immunoprecipitation to screen the substrates of ISG15 and validate its ISGylation modification. Nude mice and zebrafish xenograft models were utilized to demonstrate that ISG15 regulates stem cell characteristics and promotes malignant progression of ATC. RESULTS: We found that among several ubiquitin proteins, only ISG15 was aberrantly expressed in ATC and enriched in CSCs. Single-cell sequencing analysis revealed that abnormal expression of ISG15 were intensely associated with stemness and malignant cells in ATC. Inhibition of ISG15 expression dramatically attenuated clone and sphere formation of ATC cells, and facilitated its sensitivity to doxorubicin. Notably, overexpression of ISGylation, but not the non-ISGylation mutant, effectively reinforced cancer stem cell-like characteristics. Mechanistically, ISG15 mediated the ISGylation of KPNA2 and impeded its ubiquitination to promote stability, further maintaining cancer stem cell-like characteristics. Finally, depletion of ISG15 inhibited ATC growth and metastasis in xenografted mouse and zebrafish models. CONCLUSION: Our studies not only provided new insights into potential intervention strategies targeting ATC CSCs, but also uncovered the novel biological functions and mechanisms of ISG15 and ISGylation for maintaining ATC cancer stem cell-like characteristics.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Ubiquitinas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Citocinas , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Ubiquitinas/genética , Peixe-Zebra
8.
Gland Surg ; 12(5): 664-676, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37284705

RESUMO

Background: The increase in the diagnosis of papillary thyroid carcinoma (PTC) has prompted researchers to establish a diagnostic model and identify functional subclusters. The Human Phenotype Ontology (HPO) platform is widely available for differential diagnostics and phenotype-driven investigations based on next-generation sequence-variation data. However, a systematic and comprehensive study to identify and validate PTC subclusters based on HPO is lacking. Methods: We first used the HPO platform to identify the PTC subclusters. An enrichment analysis was then conducted to examine the key biological processes and pathways associated with the subclusters, and a gene mutation analysis of the subclusters was conducted. For each subcluster, the differentially expressed genes (DEGs) were selected and validated. Finally, a single-cell RNA-sequencing data set was used to verify the DEGs. Results: In our study, 489 PTC patients from The Cancer Genome Atlas (TCGA) were included. Our analysis demonstrated that distinct subclusters of PTC are associated with different survival times and have different functional enrichment, and that C-C motif chemokine ligand 21 (CCL21) and zinc finger CCHC-type containing 12 (ZCCHC12) were the common down- and upregulated genes, respectively, in the 4 subclusters. Additionally, 20 characteristic genes were identified in the 4 subclusters, some of which have previously been reported to have roles in PTC. Further, we found that these characteristic genes were mainly expressed in thyrocytes, endothelial cells, and fibroblasts, and were rarely expressed in immune cells. Conclusions: We first identified subclusters in PTC based on HPO and found that patients with distinct subclusters have different prognoses. We then identified and validated the characteristic genes in the 4 subclusters. These findings are expected to serve as a crucial reference that will improve our understanding of PTC heterogeneity and the use of novel targets.

9.
Bioorg Chem ; 135: 106494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011522

RESUMO

To overcome or delay the drug-resistance of first-generation epidermal growth factor receptor (EGFR) kinase inhibitors and non-selectivity toxicity mediated by second-generation inhibitors, splicing principle was employed to design and synthesize a series of Osimertinib derivatives containing dihydroquinoxalinone (8-30) as the novel third-generation inhibitors against double mutant L858R/T790M in EGFR. Among them, compound 29 showed excellent kinase inhibitory activity against EGFRL858R/T790M with an IC50 value of 0.55 ± 0.02 nM and potent anti-proliferative activity against H1975 cells with an IC50 value of 5.88 ± 0.07 nM. Moreover, the strong down-regulation effect of EGFR-mediated signaling pathways and the promotion of apoptosis in H1975 cells confirmed its potent antitumor activities. Compound 29 was also demonstrated with good ADME profile in various in vitro assays. Further in vivo studies confirmed that compound 29 could suppress the growth of xenograft tumors. These results verified that compound 29 would be a promising lead compound for targeting drug-resistant EGFR mutations.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
J Ethnopharmacol ; 313: 116520, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120058

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF) is a pathological process of irreversible scarring of lung tissues, with limited treatment means. Sceptridium ternatum (Thunb.) Lyon (STE) is a traditional Chinese herbal medicine that has a traditional use in relieving cough and asthma, resolving phlegm, clearing heat, and detoxicating in China. However, its role in PF has not been reported. AIM OF THE STUDY: This study aims to investigate the protective role of STE in PF and the underlying mechanisms. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were divided into control group, PF model group, positive drug (pirfenidone) group and STE group. After 28 days of STE administration in bleomycin (BLM)-induced PF rats, living Nuclear Magnetic Resonance Imaging (NMRI) was used to observe the structural changes of lung tissues. H&E and Masson's trichrome staining were used to observe PF-associated pathological alteration, and immunohistochemistry (IHC) staining, western blotting, and qRT-PCR were used to detect the expression of PF-related marker proteins in the lung tissues. ELISA was used to detect PF-associated biochemical criteria in the lung tissue homogenates. The proteomics technology was used to screen the different proteins. Co-immunoprecipitation, western blotting, and IHC staining were used to confirm the underlying targets of STE as well as its downstream signaling. UPLC-Triple-TOF/MS assay was used to explore the effective components in the alcohol extracts of STE. Autodock vina was used to detect the potential binding between the above effective components and SETDB1. RESULTS: STE prevented PF by inhibiting the activation of lung fibroblasts and ECM deposition in BLM-induced PF rats. Mechanism analyses demonstrated that STE could inhibit the up-regulation of SETDB1 induced by BLM and TGF-ß1, which further blocked the binding of SETDB1 and STAT3 as well as the phosphorylation of STAT3, ultimately preventing the activation and proliferation of lung fibroblasts. CONCLUSION: STE played a preventive role in PF by targeting the SETBD1/STAT3/p-STAT3 pathway, which may be a potential therapeutic agent for PF.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Ratos , Animais , Ratos Sprague-Dawley , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Pulmão , Bleomicina , Medicamentos de Ervas Chinesas/efeitos adversos , Etanol/farmacologia
11.
Mol Cancer ; 22(1): 68, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024932

RESUMO

The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging ecological treatment strategy for HNSCC based on existing studies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas/patologia , Terapia de Relaxamento , Ecossistema
12.
Adv Sci (Weinh) ; 10(14): e2206139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919784

RESUMO

Endothelial dysfunction is considered a predominant driver for pulmonary vascular remodeling in pulmonary hypertension (PH). SOX17, a key regulator of vascular homoeostasis, has been found to harbor mutations in PH patients, which are associated with PH susceptibility. Here, this study explores whether SOX17 mediates the autocrine activity of pulmonary artery ECs to maintain endothelial function and vascular homeostasis in PH and its underlying mechanism. It is found that SOX17 expression is downregulated in the endothelium of remodeled pulmonary arteries in IPH patients and SU5416/hypoxia (Su/hypo)-induced PH mice as well as dysfunctional HPAECs. Endothelial knockdown of SOX17 accelerates the progression of Su/hypo-induced PH in mice. SOX17 overexpression in the pulmonary endothelium of mice attenuates Su/hypo-induced PH. SOX17-associated exosomes block the proliferation, apoptosis, and inflammation of HPAECs, preventing pulmonary arterial remodeling and Su/hypo-induced PH. Mechanistic analyses demonstrates that overexpressing SOX17 promotes the exosome-mediated release of miR-224-5p and miR-361-3p, which are internalized by injured HPAECs in an autocrine manner, ultimately repressing the upregulation of NR4A3 and PCSK9 genes and improving endothelial function. These results suggest that SOX17 is a key gene in maintaining endothelial function and vascular homeostasis in PH through regulating exosomal miRNAs in an autocrine manner.


Assuntos
Exossomos , Hipertensão Pulmonar , MicroRNAs , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Endotélio/metabolismo , Exossomos/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , MicroRNAs/genética , Pró-Proteína Convertase 9/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
13.
Cell Biol Int ; 47(7): 1209-1221, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36883909

RESUMO

Abnormal spindle-like microcephaly-associated (ASPM) protein is crucial to the mitotic spindle function during cell replication and tumor progression in multiple tumor types. However, the effect of ASPM in anaplastic thyroid carcinoma (ATC) has not yet been understood. The present study is to elucidate the function of ASPM in the migration and invasion of ATC. ASPM expression is incrementally upregulated in ATC tissues and cell lines. Knockout (KO) of ASPM pronouncedly attenuates the migration and invasion of ATC cells. ASPM KO significantly reduces the transcript levels of Vimentin, N-cadherin, and Snail and increases E-cadherin and Occludin, thereby inhibiting epithelial-to-mesenchymal transition (EMT). Mechanistically, ASPM regulates the movement of ATC cells by inhibiting the ubiquitin degradation of KIF11 and thus stabilizing it via direct binding to it. Moreover, xenograft tumors in nude mice proved that KO of ASPM could ameliorate tumorigenesis and tumor growth accompanied by a decreased protein expression of KIF11 and an inhibition of EMT. In conclusion, ASPM is a potentially useful therapeutic target for ATC. Our results also reveal a novel mechanism by which ASPM inhibits the ubiquitin process in KIF11.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Knockout , Proteínas do Tecido Nervoso , Ubiquitinas/farmacologia , Movimento Celular , Proliferação de Células , Cinesinas/genética
14.
Drug Resist Updat ; 68: 100939, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806005

RESUMO

Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Biomarcadores , Transdução de Sinais , Microambiente Tumoral/genética
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166591, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328145

RESUMO

Extensive infiltration of tumor-associated macrophages was correlated poor prognosis in anaplastic thyroid cancer (ATC). However, the heterogeneity and characteristics of the ATC-associated macrophages (ATAMs) in ATC remain far from clear. We combined single-cell RNA-sequencing analysis and gene expression microarray datasets to assess the molecular signature of ATAMs. Compared with normal thyroid-associated macrophages (NTAMs), 778 differentially expressed genes (DEGs) significantly changed in ATAMs compared with NTAMs. These DEGs were correlated with oxidative phosphorylation (M2 phenotype) and phagocytosis (M1 phenotype). Moreover, ATAMs highly expressed pro-tumor genes associated with angiogenesis, fibrosis, metalloprotease activity, and metastasis. Notably, we identified one ATC-specific subset, IL2RA+ VSIG4+ ATAMs, co-expressed M1 and M2 markers. The infiltration of IL2RA+ VSIG4+ ATAMs showed strong correlation with BRAF and RAS signaling, and its high infiltration was associated with favorable prognosis in thyroid-cancer patients. IL2RA+ VSIG4+ ATAMs were associated with increased tumor-infiltrating lymphocytes (B cells, CD8+ T cells, Tregs). IL2RA+ VSIG4+ ATAMs interacted with CD8+ T cells and Tregs through immune checkpoints (such as LGALS9_HAVCR2), cytokines (such as CXCL10_CXCR3), and receptors (such as CSF1R_CSF1), thereby forming an immunosuppressive microenvironment. Multiplex immunohistochemistry staining and coculture experiment confirmed that ATC cancer cells were able to induce the polarization of IL2RA+ VSIG4+ ATAMs. Besides, we identified several novel ATC-specific immune checkpoint genes including the immunosuppressive molecule VSIG4, LAIR1, and LILRB2. Expression of VSIG4 was also significantly correlated with tumor-infiltrating lymphocytes (B cells, CD8+ T cells, Tregs). In conclusion, our study revealed an ATC-specific ATAM subset with bifunctional phenotype, which provided a comprehensive insight to delineate the molecular characteristics of ATC-associated macrophages.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Linfócitos T CD8-Positivos , Subunidade alfa de Receptor de Interleucina-2 , Macrófagos , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Microambiente Tumoral , Macrófagos Associados a Tumor
16.
Mol Cancer ; 21(1): 190, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192735

RESUMO

Anaplastic thyroid carcinoma (ATC) is an extremely malignant type of endocrine cancer frequently accompanied by extrathyroidal extension or metastasis through mechanisms that remain elusive. We screened for the CREB3 transcription-factor family in a large cohort, consisting of four microarray datasets. This revealed that CREB3L1 was specifically up regulated in ATC tissues and negatively associated with overall survival of patients with thyroid cancer. Consistently, high expression of CREB3L1 was negatively correlated with progression-free survival in an independent cohort. CREB3L1 knockdown dramatically attenuated invasion of ATC cells, whereas overexpression of CREB3L1 facilitated the invasion of papillary thyroid carcinoma (PTC) cells. Loss of CREB3L1 inhibited metastasis and tumor growth of ATC xenografts in zebrafish and nude mouse model. Single-cell RNA-sequencing analysis revealed that CREB3L1 expression gradually increased during the neoplastic progression of a thyroid follicular epithelial cell to an ATC cell, accompanied by the activation of the extracellular matrix (ECM) signaling. CREB3L1 knockdown significantly decreased the expression of collagen subtypes in ATC cells and the fibrillar collagen in xenografts. Due to the loss of CREB3L1, ATC cells were unable to activate alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs). After CREB3L1 knockdown, the presence of CAFs inhibited the growth of ATC spheroids and the metastasis of ATC cells. Further cytokine array screening showed that ATC cells activated α-SMA-positive CAFs through CREB3L1-mediated IL-1α production. Moreover, KPNA2 mediated the nuclear translocation of CREB3L1, thus allowing it to activate downstream ECM signaling. These results demonstrate that CREB3L1 maintains the CAF-like property of ATC cells by activating the ECM signaling, which remodels the tumor stromal microenvironment and drives the malignancy of ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Actinas , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citocinas , Humanos , Camundongos , Proteínas do Tecido Nervoso , RNA , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral , Peixe-Zebra
17.
Bioorg Chem ; 129: 106138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115310

RESUMO

Hypoxia is widespread in solid tumors, such as NSCLC, and has become a very attractive target. On the basis of AZD9291 scaffold, novel hypoxia-targeted EGFR inhibitors without the acrylamide warhead but containing hypoxic reductive activation groups were described. Among them, compound JT21 exhibited impressive inhibitory activity (IC50 = 23 nM) against EGFRL858R/T790M and displayed about 21-fold inhibitory activity decrease against EGFRwt. Under hypoxia, JT21 exhibited more significant proliferation inhibitory activities against H1975 cells (IC50 = 7.39 ± 2.20 nM) and HCC827 cells (IC50 = 5.88 ± 0.85 nM) than that of AZD9291, which was about 5 times more effective than normoxia activities. Meanwhile, the weak inhibition effects on A549 and BEAS-2B cells suggested JT21 might be a selective inhibitor for EGFR mutations with low toxicity. Furthermore, JT21 could induce apoptosis of H1975 cells under hypoxia and showed good bio-reductive property.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Inibidores de Proteínas Quinases , Receptores ErbB , Hipóxia Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Mutação , Hipóxia
18.
Phytomedicine ; 106: 154389, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037771

RESUMO

BACKGROUND: Cardiac fibrosis is a major structural change observed in the heart of patients with type 2 diabetes mellitus (T2DM), ultimately resulting in heart failure (HF). Suppression of inflammation is an effective therapeutic strategy for treating cardiac fibrosis and HF. Gentiopicroside (GPS), the primary component of Gentiana manshurica Kitagawa, possess potent anti-inflammatory activity. However, its cardioprotective role remains elusive. PURPOSE: We explored the potential cardioprotective role of GPS in T2DM rats and its underlying mechanisms. METHODS: T2DM rats built by high-fat diet and streptozotocin were orally administered 25, 50, or 100 mg/kg GPS, daily for 8 weeks. The positive control drug was Metformin (200 mg/kg/day). Primary cardiac fibroblasts (CFs) were induced by high glucose (30 mM) and subsequently treated with GPS (100 µM). Cardiac function and pathological changes were analyzed using echocardiography and histological staining. Potential targets of GPS were predicted using Molecular docking. Real-time PCR as well as western blotting were applied to verify the expression of objective genes. RESULTS: All three doses reduced fasting blood glucose levels, but only 50 and 100 mg/kg GPS improved cardiac function and alleviated inflammation and fibrosis in T2DM rats. GPS (100 mg/kg) exhibited a better effect, similar to that of metformin. Mechanistically, binding between GPS and the MH2 domain of Smad3 blocked high glucose-induced Smad3 phosphorylation, thus attenuating inflammation, oxidative stress, and activation in CFs. CONCLUSION: We, for the first time, demonstrated that GPS improved cardiac function in T2DM rats and elucidated the underlying mechanism through which GPS targeted Smad3 phosphorylation to suppress inflammation and activation in CFs, thereby revealing the potential application of GPS in HF therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Metformina , Animais , Anti-Inflamatórios/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Glucosídeos Iridoides , Metformina/uso terapêutico , Simulação de Acoplamento Molecular , Miocárdio/metabolismo , Fosforilação , Ratos , Proteína Smad3/metabolismo , Estreptozocina
19.
Med Sci Monit ; 28: e937081, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35854639

RESUMO

BACKGROUND LIM domain proteins play crucial roles in tumors by interacting with diverse proteins. However, their roles in the course of colorectal mucosa-adenoma-carcinoma remain unclear. This study aimed to depict their dynamic expression profiles and elucidate their potential functions in this transition course. MATERIAL AND METHODS Differentially-expressed LIM proteins (DELGs) in paired adenomas, carcinomas, and mucosae were identified using the GEO dataset (GSE 117606) and validated by immunohistochemistry using our tissue microarray. Kaplan-Meier survival analysis, WGCNA, module-trait analysis, and KEGG enrichment were conducted. The correlation of DELGs expression levels with immune infiltration was assessed using the ESTIMATE package and TISCH database. The role of DELGs of interest was validated using cell proliferation, migration, and invasion assays. RESULTS Four DELGs were identified - LMO3, FHL1, NEBL, and TGFB1I1 - all of which were of significance in prognosis. Module-trait correlation and KEGG enrichment revealed their involvement in cancer-related signaling. Immunohistochemistry showed gradual downregulation of LMO3 but upregulation of NEBL in the mucosa-adenoma-carcinoma sequence. The opposite expression patterns were observed for FHL1 and TGFB1I1 in tumor epithelium and mesenchyme. High expression levels of the DELGs were correlated with increased infiltration of NK, NKT, and macrophages, except for NEBL. Importantly, LMO3 inhibited proliferation, migration, and invasion of colon epithelial cells. CONCLUSIONS This study identified 4 differentially-expressed LIM genes - LMO3, FHL1, TGFB1I1, and NEBL - and revealed they were involved in the mucosa-adenoma-carcinoma sequence via regulating cancer-related pathways, influencing epigenetic field, or affecting immune infiltration. Our findings provide new insights into the roles of LIM proteins in the course of mucosa-adenoma-carcinoma.


Assuntos
Adenoma , Neoplasias Colorretais , Proteínas com Domínio LIM , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
20.
Ann Transl Med ; 10(8): 486, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571445

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease mainly caused by excessive proliferation of fibroblasts and activation of myofibroblasts. The cellular microenvironment is mainly composed of different types of cellular components and extracellular matrix (ECM), whose changes directly affect cellular heterogeneity, resulting in immensely complex cellular interactions. However, microenvironment study is mainly focused on the pathological process of tumors, and the microenvironment changes during IPF development remain unclear. Methods: The current study intends to employ IPF-related single-cell sequencing and gene expression profile data to analyze the scores of different cell clusters in the IPF microenvironment, and exploit the underlying interaction between cells to illustrate the fundamental mechanism causing IPF. Results: Our analysis revealed that the amount of endothelial cells was obviously decreased, and the amount of fibroblasts and myofibroblasts was increased during the development of IPF, suggesting a possible endothelial-mesenchymal transition (EndMT) process. Furthermore, we found that the hub genes obtained through IPF-related gene expression profile analysis may play a regulative role in the number and function of endothelial cells and fibroblasts/myofibroblasts during IPF. Conclusions: Our research represents a valuable analysis of the cellular microenvironment, and provides a novel mechanistic insight into the pathobiology of not only EndMT in IPF, but also other traumatic fibrotic disease disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...